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1. INTRODUCTION
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2) Two-Dimensional Problem

Normal Stress and Strain
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1-3. Beam Theory
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1.4 Properties of Reinforced Concrete Structure

Unit Weight

Nominal Strength ) )
Concrete Type Unit Weight (kN/ms3)
(N/mm2 = MPa)

Normal Concrete Fc=36 24

Material Parameters

Thermal
Young’s Modulus ] . .
Poisson’s Ratio Expansion
(N/mm? = MPa) . .
Coefficient (1/°C)
Steel Bar 200 000 1/4 1x105

22 000 (Fc=18)
Concrete 25000 (Fec=24) 1/6 1x 105
28 000 (Fc=30)



2. SIMPLE EXAMPLE FOR FEM FORMULATION
Step.1: Description of the Problem

The problem is to obtain the deformation of a simple supported beam under various load

conditions.

m || g

A

If you change the load condition, you will get the different deformation pattern. Actually,

there are infinite variations for the deformation pattern.

! &5

m\\\\_////g K\’//////’g etc.

Step.2: Assumption of deformation function

We assume a particular function for the deformation pattern to fix the variation, such

as the following function:
. T
V(X) = asm(t X) 2-1)
x=0 x=L

Step.3: Relation between nodal displacement and element deformation

From Equation (2-1), The displacement § at the center node A is calculated as

o0=v(0.5L)=a (2-2)
A

\5 A
A 4

The relation between nodal displacement and element deformation is then expressed as,

V(X) =0 sin(% X) (2-3)



Step.4: Constitutive equation at the node

We obtain the relation between the nodal force and the nodal displacement, for example,

by using the “Principle of Virtual Work Method.”

P=Ko

(2-4)

A\\\\\\J—i////’é

The process is summarized as follows:

eI e A |

Translate external forces into

equivalent nodal force, P.

AN
@ Calculate nodal displacement, 0 ,
P from the constitutive equation,
} 5=K'P
oy ¢ S 2

1!
~3v__*

Obtain the element deformation

from the nodal displacement.

wmzagm%@

The above example tells the essence of the finite element analysis, which is:

“Assume the deformation pattern to reduce the degree of freedom of the element, then,

obtain the deformation from the limited number of nodal displacements.”
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3. TRIANGULAR ELEMENT FOR PLANE ANALYSIS

Step.1: Description of the Problem

The problem is to obtain the deformation of a simple triangular element.

There are infinite variations for the deformation patterns.

ete.

Step.2: Assumption of deformation function

To fix the variation for the deformation patterns, we assume a linear function for the
deformation pattern.
ux,y)=a, +a,X+a,y
b (3-1)
VX, Y)=a, +aX+agy

In a matrix form,

(3-2)

o <
— o
x o
< ©
R

Step.3: Relation between nodal displacement and element deformation

The displacements of the element nodes are expressed as,
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It is summarized as,
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We can obtain the coefficients «,, --¢, from the nodal displacements as,
a =AU (3-7)

Substituting Equation (3-7) into Equation (3-2), the relation between nodal

displacement and element deformation is,

u_lxyOOOA_l
v_0001xy

ulx,y) = Hky) U

—_

[

w2

(3-8)

S}

< <= < £ &£ <

w

Step.4: Constitutive equation at the node

We obtain the relation between the nodal force and the nodal displacement, for example,

by using the “Principle of Virtual Work Method.”

P, u,
P, u,
P. u
P l=K| (3-9)
Q Vi
Q, v,
Q; Vs
F = KU
The process is summarized as follows:
(1) Translate external forces into equivalent nodal force,
F=1{P;, P5, Ps, @1, Q2 Q37
2 Calculate the nodal displacements from the constitutive equation,
U=K!F
3 Obtain the element deformation from the nodal displacement.

ulx,y) = Hx,y)U
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4. STIFFNESS MATRIX FOR TRIANGULAR ELEMENT

Stiffness matrix in Equation (3-9) can be obtained from the “Principle of Virtual Work

Method,” which is expressed in the following form:

jETa dv=UTF (4-1)

\Y

where, £is a virtual strain vector, ois a stress vector, U is a virtual displacement

vector and /' is a load vector, respectively.

In case of the plane problem, the strain & vector is defined as,

au
£, OX
g, |= % (4-2)
7 xy ou ov
—_ + _
oy oX

Substituting Equation (3-8) into Equation (4-2), the strain vector is calculated from the

nodal displacement vector as,

u1
gl u
g, g\f 01 0000 ?
u
g l=| — |=]0 0000 1|A" (4-3)
% 001010 Y
Po) ou v v,
oy oX v,
e = B U
In the plane stress problem, the stress-strain relationship is expressed as,
o, . I v 0 | g
o,|= Slv 1 0 |e (4-4)
l-v 0 0 1-v y
Xy 2 Xy
o = D £
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Substituting Equation (4-3) into Equation (4-4),
oc=DBU (4-5)

From the Principle of Virtual Work Method,

[(8U) (DBU)Av=0" [j B DdeJU -U'F (4-6)
\

\

Therefore, the constitutive equation is obtained as,

F=KU, K :jBT DBdv (4-7)
\

15



5. FROM ELEMENT STIFFNESS MATRIX TO GLOBAL STIFFNESS MATRIX

1) Force control

(1

ALV

Element Stiffness Matrix:
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< < C© Cc

&

Element (1) ...
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(5-1)

(5-2)

(5-3)



In case of force control, set the load condition,

P, 0
Pl | 0
Q3 |- P
Q, 0

The displacement vector is then obtained by solving the constitutive equation,

U, 0
u, _ k- 0
v, -P
Vv, 0

(5-4)

(5°5)
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2) Displacement Control

D
u,
A
Ao ® .
7 u, u,
A
2 u L. u
? @ * | > Boundary Condition —| *
Vv Vv
? (1 Vl @ fixed ... ur=vi=0 V3
7 | @ fixed ... us=v2=0 *
/ @ @ V3
= v,
Imposing the control displacement V, =D to the Global Stiffness Matrix:
Py (ks ki ok k(s
AR R R R oo
Q k(2) k(2) k(z) k(z) D
3 52 53 55 56
) I IR W Ry 7

Subtracting the force related to the control displacement from force vector, and other

external loads to be zero,
(2) (2) (2) (2)
- k25 D k22 k23 k26 u;
(2) | k® ) (2) (2) (2) R
-kii'D |=| ks ki +Kgy o Ky + Ky | uy, (5-7)
(2) (2) M (2) M (2)
- k65 D k62 k63 + k63 k66 + k66 v,

This process can be done before making the Global Stiffness Matrix. Imposing the

control displacement V, =D to the element stiffness matrix of Element (2),

(2) (2) (2) (2) (2) (2) (2)
Pl k11 k12 I(13 k14 k15 k16 u1 - le
(2) (2) (2) (2) (2) (2) (2)
P3 k21 kzz k23 k24 kzs k26 u3 - kzs
(2) (2) (2) (2) (2) (2) (2)
I34 N k31 k32 k33 k34 k35 k36 u4 > f | k35 D (5'8)
Q TK® K® k@ k@ k@ k@ |y @ k>
1 41 42 43 44 45 46 1 — Nys
(2) (2) (2) (2) 2) (2) (2)
Q3 I(51 ksz k53 k54 kss k56 D - kss
(2) (2) 2) (2) 2) (2) (2)
Q4 k61 k62 k63 k64 k65 k66 V4 - k65

The force vector f(z) will be summed together in the same manner of the element

stiffness matrix.

18



6. HIGHER ORDER ELEMENT
The linear triangular element assumes the
deformation pattern to be a linear function

between two nodes.

It requires a large number of elements at the

place where deformation changes largely.

After
deformation

Before /JH After
deformation

Before

To reduce the number of elements, we
introduce the higher order elements, such as
the following second order elements where
the deformation pattern is assumed to be the

second order function of coordinate.

2 2
U=, +a,X+a,Y+a, X" +a,Xy+a,y

(6-1)
V=a, +aX+a,Y+ X +o, Xy +a,y’
In a matrix form,
al
uy (1 x y x> xy y> 00 0 0 0 0)a 62
v) {0000 0 0 I x vy x> xy y):
alZ
5
In order to define the second order function, we need
4 vs an additional node in the middle of each side of the

triangle. At the result, the total number of nodes in

us one element is 6.

uz 3



The displacement of the element nodes are then expressed as,

2 2
u, Lox oy, X0 Xy, Y| a,
2 2
u, L X, Yy, X5 XY, Y, | 0 a,
u 1 x X, X > a
6 6 y6 6 6y6 y6 6
E e G
2 2
Vi LoX Yy X XY, Y| o
2 2
v, [T X Y, X XY, Y| 9
. O | . . . . S : .
v | 1 x X, X 2 | o
6 6 Yo 6 Yo Yo 12
u = A @

From Equations (6-1) and (6-2), we obtain

2 2
(ujz[l Xy )2) Xy y (1) 00 0 0 OjA_l U, 6-4)

v) 0 0 0 0 0 Xy x> xy y’ v,
VZ
V6
ulxy) = Hx,y) U

As the same as the linear triangular element, the constitutive equation is obtained as

] u,
P2 u2
P u
S l=K| ° (6-5)
Q v,
Q, v,
Qs Vg

20



F = KU

The process is summarized as follows:

(1 Translate external forces into equivalent nodal force,
F=\Pi, ... Ps @, ..., @37

2 Calculate the nodal displacements from the constitutive equation,
U=K!F

3 Obtain the element deformation from the nodal displacement.

ulx,y) = Hx,y)U

21



7. INTERPOLATION FUNCTION

Suppose we have one dimensional element under loading. As discussed before, we

assume a linear function for the deformation pattern after loading,

/‘ u(x) =a, +a,Xx
uz

ui |1 2
- » X
X1 X2 u(x) = (1 X{ZO] (7-1

1

The next step is to obtain the coefficients, ao, a1, from the nodal displacements. From
the relations:

u, =a, +axX

u, =4, +aXx,

)6 )3

1
1
= A«

or

The coefficients are obtained as, @ =A U. Then, the relation between the deformation

and the nodal displacements is,

ux) =1 x)A‘lulj (7-3)

2

Instead of the previous procedure, we introduce the interpolation functions to express

the deformation directly from the nodal displacements:
u(x) =h,(x)u, +h,(x)u, (7-4)

The interpolation functions, A7 and Az have the following characteristics:

l, x= L x=
hl(x)={’ X u‘, hz(x)={0’ ):( = (7-5)

0, x=#u #U,

22



From these characteristics, the functions are easily obtained as,

hl(X): % X

’

X—X,

h,(x) = (7-6)

One of the advantages of using interpolation functions is to reduce the burden to

calculate the inverse matrix of A in Equation (7-3).

In the same manner, if we assume a second order function for the deformation pattern,

the deformation can be directly expressed using interpolation functions as follows:

u(x) =h,(x)u, +h,(x)u, + h,(x)u, (7-7)

/‘
uz

ui |1 2

X1 X2

hi(x)u1
5

> X
X1 X2
ha(x)us us

»n X
X1 X2

First order interpolation function

. us
ui | 1 2
L » X
X1 3 X2
1 |
hix)u
u1
> X
X1 X2
us
ha(x)us
> X
X1 X2
us hs(x)us
m > x
X1 X2

Second order interpolation function
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8. NATURAL COORDINATE

1) Natural coordinate

d— i —

v

I |
I T
0 1 3 4 5
% I
7 9

T N T

w(x) : distribution of weight

|
I
6
I
1

0

v

v

X

v

t=7+05x

When we measure the coordinate of
the pencil, the result is different
depending on the scale we use. In
this example, the coordinate of the
head of the pencil is 5.0 in x-scale

and 9.5 in t-scale.

As long as we have one-to-one
relationship between two scales,
we can translate the value in one
scale to the value in another scale

anytime.

t

‘\/

X=2(t=7)

The total weight of the pencil will be calculated in x-axis as,

W = iw(x)dx

To translate it into t-axis, we use the following relationships:

S B N W b~ O
| I
1
o
X

Global relationship:

Local relationship:

(8-1)
X=2(t-"7) (8-2)
dx = 2dt (8-3)

Substituting Equations (8-2) and (8-3) into (8-1), the total weight is expressed as,

W = 2Tw(x(t))dt

(8-4)
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Next we consider a more complicated scale to measure the total weight of the pencil.

T X

4 X = X(t)
[ — — F——> x
0 1 2 3 4 5 6 >
I | > t 47T ~
a B 37T dx
T . 27T
w(x) : distribution of weight dt
1+
» X 0 T >
a B
W(x_
l ﬂ IREN > X
X X+dx
The relationships between x-axis and t-axis are:
Global relationship: X = X(t) (8-5)
: . dx(t
Local relationship: dx = %dt (8-6)

Where dx(t)/dt represents the first derivative of x(x) by the variable t, which correspond
to the slope of x(t) at t. Substituting Equations (8-5) and (8-6) into (8-1), the total weight

will be expressed in t-axis as,
=j (x(t))dx(t) dt (8-7)

Setting a=-1, B=1,
W = j f(tydt, f(t)= W(x(t))dx(t) (8-8)

Such coordinate is called “natural coordinate.”
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2) Gaussian quadrature rule

If the integration range is [-1, 1], the integration can be evaluated approximately by

n-points Gaussian quadrature rule which is generally expressed in the following form:
1
jf(t)dtzwlf(t1)+wzf(t2)+~--+wnf(tn) (8-9)
|

where, W,,W,,---,W, are the weighting coefficients. This formula requires a limited

number of function values, f (t,), f(t,),---, f(t,), at the sampling points, t,,t,,---,t , to

n?

evaluate the integration.

For example, the 3 points Gaussian quadrature rule is defined as:

1
j f(t)dt =0.5556 f(—0.7746)+0.8889 f(0)+0.5556 f(0.7746) (8-10)
-1

=w, f(t)+w, f(t,)+w;f(t,)

where, W, =5/9=0.5556, w, =8/9=0.8889, w,=5/9=0.5556

t, =—/3/5=-0.7746, t,=0, t,=+/3/5=0.7746

£(0.7746)

f(t)

£(-0.7746)

-1-0.7746 0 +0.7746 +1
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9. ISOPARAMETRIC ELEMENT

We now introduce the natural coordinate for the example of one dimensional element.

ui |1 2
I » X
X1 X2
: — t
1 +1

X1

If we assume the linear transfer function x(t) between x-axis and t-axis, x(t) will be

expressed as

where

n(® = (1-1),

Actually, it satisfies the fact that

X(t) = h, ()%, +h, ()X, 9-1)
1

h,(t)=—(1+1) (9-2)

x(1) = X, (9-3)

X(_l) = Xl 9
/‘
i uz
u1
—> t
1 +1
I
T hi(t)u:
u1 -
-1 +1
ha(t)us us
» t
1 +1

The deformation of the element is also

expressed as,
u(t) = h,(tu, + h,(t)u, (9-4)

Therefore, the functions h,(t), h,(t)are the

interpolation functions we introduced before.

The element where both the coordinate
transfer function x(t) and the deformation
function u(t) are expressed using the same
interpolation functions on the natural

coordinate is called “Isoparametric element.”



Advantages of using isplarametric elements are summarized below:

n
(1) The relation u(t) = Z h; (t)u, does not require the calculation of inverse matrix.
i1

(2) The relation X(t) = Z h; (t)X; enables to use the numerical integration method.
=

(3) Both functions u(t) and x(t) are expressed using the same interpolation functions.
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10. SYSTEMATIC FORMULATION OF INTERPOLATION FUNCTION

(1) One dimensional element

+1 hlzl(l_r) 1
l\ 2 h1 zg(l_r)

r=-1 r=+1
2 Node
T (S
+ 2_2 h 1 1
=—{+Tr
r=— r=+1 ? 2( )
+1 h“""-.x_‘h‘ fy =1 =rl=101=r2) 1 1 2
— Ih=2-1 | —=1-r?)
o ™ 2 2
r=0 re+l
3 Node =

i | L,
_,-"’/ ‘l:1 hy=g(1+rr=3{1-12) h2 :5(1_'_ r) _5(1_ r )

r=—1 r=0 r=+1

hy=1-r°

+1
hy=1-r2

s | r=0 r=+1

As presented here, if you increase a node to define the second order function for the
deformation, the interpolation function changes in the following manners:
Modify the existing interpolation functions, hi and he,

Define a new interpolation function, hs.
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(2) Two dimensional element

i

H

{a} Four to 9 variable-number-nodes two-dimensional element

(1 +701 +53)
10 -1 +5)
11-n-s)
{1 +0{1-59)
100 =r2)(1 +5)
21 =s2)1 -r)
1 -r2)(1~5)
31 =521 +7)

(1 -r2)(1 —52)

---------

.........

Include only if node / is defined

i=6

.........

.........

{b} Interpolation functions

i=8

.........

ooooooooo
---------
.........

---------
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11. STIFFNESS MATRIX FOR ISOPARAMETRIC ELEMENT

A two dimensional isoparametric element is adopted below.

s
A A Node 1
Y, v !
___> r
Node 3
N R Node 4
X4 X, U g

The coordinate transfer function {x, y} is expressed using the interpolation functions as

X(r,s) = ZZ‘:hi(r,s)xi = %(1 +1)(1+59)X, +%(l - +5s)x, +%(l -1 -s)X, +%(1 +r)(1-s)X,

i=1

V(1.8 = SR (L8, =1+ 149y, + (=D + 9y, + 1 (1=N)=9)y, + 31 +11-9)y,

(11-1)

The deformation function {u, v} is also expressed using the same interpolation functions.

u(r,s) = ZA‘:hi(r,s)ui = i(l +1r)(1+s)u, +%(l -l +syu, +i(1 -r)(1-s)u, +i(l +r)(1-syu,

i=1

v(r,s) = ihi (r,s), = %(l +r)(1+5s)y, +i(l -nN+s), + i(l -nN-s)v, + %(1 +r)(1-s)v,

(11-2)

In a matrix form,

u(r,s)) [h(r,s) 0 h,(r,s) 0 h,(r,s) 0 h,(r,s) 0 v,
v(r,s)) | 0 h,(r,s) 0 h,(r,s) 0 h,(r,s) 0 h,(r,s) | u;

ul,s)=H@ s) U (11-3)
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Stiffness matrix can be obtained from the “Principle of Virtual Work Method,” which is

expressed in the following form:

jETa dv=UTF (11-4)
\Y

where, ¢ 1is a virtual strain vector, o is a stress vector, U is a virtual displacement
vector and F' 1is a load vector, respectively. In case of the plane problem, the strain &

vector 1s defined as,

ou
&, 0
g, |= al (11-5)
oy
7y ou ov
_+_
oy OX
Substituting Equation (11-2), the strain vector is calculated as,
au ia_hl
e, X = ox
ov oh,
&y |= ~ = Z_ [
ay i=1 8y
Yy ou ov 4, oh, 4, oh,
My N Iy 3y,
oy Ox io Oy i OX
ul
oh oh oh oh Y
-1 0 = 0 = 0 = 90 u
OX OX OX OX 2
=1 0 6_hl 0 % 0 % 0 % V2
oy oy oy oy | Uy
6_h1 8_h1 oh, oh, oh, oh, oh, oh, V4
oy oOx oy oOx oy oOx oy OoX u,
V4
£ = B U (11-6)
In the plane stress problem, the stress-strain relationship is expressed as,
o £ I v 0 |¢&
o,|[=——|v 1 0 |eg (11-7)
l-v l-v
T 0 0 T Y xy
o = D £
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Substituting Equation (11-6) into Equation (11-7),

c=DBU (11-8)
From the Principle of Virtual Work Method,
—\T — —
[(BU) (DBU)V=UT U B DdeJU -U'F (11-9)
v v
Therefore, the constitutive equation is obtained as,
(11-10)

F = KU, K:IBTDde
\)

If we assume the constant thickness of the plate (= t), using the relation dv = tdxdy,

K=t [B"DBdxdy (11-11)
V(X,y)
The following relationship is also derived from Equation (11-9)
T\ T T T

[(BU) {olav=0 [j B {o-}dv] —U'F (11-12)

\ \
Therefore, the relationship between stress vector and nodal force is

(11-13)

F =[BT {oldv

Since this integration is defined in x-y coordinate, we must transfer the coordinate into

r-s coordinate to use the numerical integration method. Introducing the Jacobian

matrix,
ox oy
_|or or]. ; ; .
J = ox oy ; Jacobian Matrix (11-14)
os Os

the above integration is expressed in r-s coordinate as,

_ [0 U a(X, y) _
K _t”B(x(r,s), y(r,s))" DB(x(r,s), y(r,s))—a(r’s) drds (11-15)

-1-1

where



oX oy
o(x,Y) o or
—272 =detJ = (11-16)
a(r,s) ox %
0s 05
1) Evaluation of Jacobian Matrix
4. oh, 4. oh,
% Q _IXi z_lyi
J — al’ 5r i=l1 8r i=1 ar (11_17)
oX oy 2, oh, 2, oh,
D YL il
05 05 = 05 = 05
2) Evaluation of the matrix B
From Equation (11-6),
G N N
OX OX OX OX
B=| o M o M, Mo, o (11-18)
oy oy oy oy
G_hl a_hl oh, oh, oh, oh, oh, oh,
oy oOx oy oOx oy oX oy OX
The derivatives —1,-“,%,8—“,- --,% are calculated as,
OX oX oy
oh, oh or oh os oh, oh,or oh, os
_:__+__’ 5 = —+ —_—,
OX Or oXx 0s OX OX Or ox 0S Ox
oh, oh or oh 0os oh, oh,or oh, os
_=__+__9 s = —+ -
oy oroy o0s oy oy or oy oOs oy
In a matrix form,
8_hl oh, oh, oh, q @ 8_hl oh, oh, oh,
OX OX OX OX |_|OXx OX| or or or or
a_hl oh, oh, oh, g @ 8_h1 oh, oh; oh,
oy oy oy oy oy oyNos os s 0s
_1-1l or or or or 11-19
Tlan b b on e
os o0s 0s 0s
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3) Evaluation of partial derivatives of the interpolation functions

n,_1 n, _1

=—(+s =—{+r

or 4( ) 0S 4( )

%:_1(14_3) %:l(l_r)

aahr f , 88;’ 41 (11-20)
—S =——(1-5 S =——(-r

or 4( ) 0S 4( )

oh, 1 oh 1

—=—(1-5 —A =——(1+s

or 4( ) 0S 4( )

4) Numerical integration

Using the 3 points Gaussian quadrature rule, the stiffness matrix is calculated
numerically as follows:

0 T (X, Y)
K =t[ [B(x(r,s),y(r,s)) DB(x(r,s), y(r,s))mdrds

—1-1

:t” F(r,s)drds (11-21)

where

(1.9 = 8055yl 5)] DB 5)y(r5) 220

w, =5/9=0.5556, w, =8/9=0.8889, w,=5/9=0.5556

rn=s, =—3/5=-0.7746, r,=s,=0, r,=5,=+3/5=0.7746

5) Assemble of finite element

To total stiffness matrix can be obtained to assemble the element stiffness matrix over

the areas of all finite elements.

K=>K, (11-22)

where m denotes the m-th element.
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12. STRESS AND STRAIN AT GAUSSIAN POINTS

1) Stress and strain at Gaussian point

If you use the 3-points Gaussian Integration Method, there are nine Gaussian points

(r.s;)(i=123, j=12,3) in an element.

s
A f Node 1
y, v !
= ]
S=s . .
N % : Gaussian points
S=S,=0U_
___> r
S=85;
s=-1
Node 3
----- L f=¢reeeceeeco—o___T-===¢ Node 4
2 f=f¥r = d - |
r=r,=0 r=rs r::+l
Xa Xr,u

The stress and strain at the Gaussian point, (ri ) S ) , is obtained from Equations (11-5)

and (11-7) as

O-X
o; =|0o, =DBijU
Xy i
gX
& =| & =BijU
Yxy )

(12-1)

(12-2)
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2) Principal stress at Gaussian point

2
o, +o o,—C
o, = y+\/( - VJ +7,,° (12-3)
2 2
o, +o o,—o,\
o, =—-—>L— e (12-4)
2 2
1 22'Xy
0, = —arctan| ——— (12-5)
2 o,—0,

LI \ji/ Lo

X Txr] (o

Note) Range of arctan is [-n/2, n/2], and 26p is in this range.
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> e

Case 3: 1, >0and o, < oy

Note) Range of arctan is [-n/2, n/2], and 20p is not in this range.

So, the angle must be 20p =« - |arctan].

‘_k

&

Note) Range of arctan is [-n/2, n/2], and 20p is not in this range.

So, the angle must be 20p = arctan - 7.

o, =011% +(O-1 ;Uzjcos@@)

" 2
| _o,to, (0,-0,
o, 20 ET o, = 5 [ 3 )005(29)
o

(12-6)
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3) Displacement at Gaussian point

After obtaining the nodal displacement, the displacement at the Gaussian point

(I’i » S| ) , is obtained from Equation (11-2) as

4
u(ri’sj)zzhi(riasj)ui

N (12-7)
V(riosj):zhi(riasj)vi

i=1
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13. INDEPENDENT FREEDOM

1) Freedom Vector

Y = 22000 N/mm/mm, v =0.1666
A
1000 mm
b * P=500N 50 mm
? 3 ﬂ 4 e
200 mm A Tl D
/ ® » X
A 1 2
A A A
i 2 > ~z 7 W
-~
> > z >
~
Initial Restrained freedom = 1 Numbering
1x 0 1 0
1y 0 1 0
2x 0 0 1
{F} = 2 0 > 0 > 2
3x 0 1 0
3y 0 1 0
4x 0 0 3
4y 0 0 4
Exercise 1)
Please obtain the freedom vector of the following structure.
Y
A
|~
? 4 5 6
[~
/ » X
11 2 3
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2) Location Matrix

200 mm

> <

1000 mm

E =

22000 N/mm/mm, v =0.1666

* P=500N 50 mm

7. .

ANRRRANY

(DElement stiffness matrix

P
QY
P2

P3’
Q3
P4
Q4

a——_—

Q2" | =

@Total stiffness matrix

A A
4’ 3’
i 4> Element node number should be
_ R in anti-clockwise order.
1’ 2’
1’)( 1’ Y 2' X 2’ Y 3 X 3 Y 4 X 4 Y
K11 | K12 | K13 | K14 | K15 | K16 | K17 | K18 U1’
K21 | K22 | K23 | K24 | K25 | K26 | K27 | K28 V1
K31 | K32 | K33 | K34 | K35 | K36 | K37 | K38 Uz’
K4l | K42 | K43 | K44 | K45 | K46 | K47 | K48 V2’ ]
K51 | K52 | K53 | K54 | K55 | K56 | K57 | K58 us’
K61 | K62 | K63 | K64 | K65 | K66 | K67 | K68 V3 Location
K71 | K72 | K73 | K74 | K75 | K76 | K77 | K78 U4’ matrix
K81 | K82 | K83 | K84 | K85 | K86 | K87 | K88 \Z& 0
0
1
A
2
” 7 W
]
- 4
0
u2 V2 Us V4
0
P2 K33 | K34 | K35 | K36 u2
Q2 | = K43 | K44 | K45 | K46 V2
4—
P4 K53 | K54 | K55 | K56 U4
Q4 K63 | K64 | K65 | K66 V4
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AN
S)

Freedom vector

1x
1y

2x
{F} = 2

3x
3y

Node number

1

2
3
4

>

>

>

1

2
4
3

%
4y

Exercise 2)

A W O O N P O O

v

w
x
o OoO|h~ WIN P O O

Please obtain the location matrix of the element @ of the following structure.

» <

T

ANRRRANY

v
X
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Answers 1) and 2)

Y
A
44 L
? 4 5 6~
» /
A @ o4 3 @ s
7 > » X
A1 2 1 3
1) Freedom vector
Initial Restrained freedom = 1 Numbering
1x 0 1 0
1y 0 1 0
2x 0 0 1
{F} = 2 0 2> 0 > 2
3x 0 1 0
3y 0 1 0
4y 0 1 0
4y 0 1 0
5x 0 0 3
5y 0 0 4
6x 0 1 0
6y 0 1 0
2) Location matrix
4,A 3,A 4,A - 3,1} -
£ x> I g Y
1’ v 2, v 1’ i 2’ id
% 0 1'x 1
1y 0 1y 2
2'x 1 2'x 0
2y 2 2y 0
3'x 3 3'x 0
3y 4 3y 0
41X 0 4,X 3
4y 0 4y 4




44
2

> <

T

Element®

4y Ay

3y

Iy

1I'x

c
(@]
= X
w%00123400
o)
&
a9 H4 N N O »m ¥
> > O > O > O >
Y
0| o|w|ow|wo|w|w]|wn
Jd|lN|l®|I|D|o| S| @
Y | ¥ | ¥ | X | X | X |X|X
Ny 8w
N N N S N > >
Jdld|m| | w|o| x|
Y | ¥ | ¥X | X | X | X |X|X Y \
a—la O | © | © | ©
o |  ©| O |O OO V| O N |l MmO O
J|lN|l®m|S|bvB|o| K| ®
Yix|¥ ||| > | x| x| XX
w|w|w|w
0| W0|Ww|(Ww|(Ww|(w|w|Lw | o | 1| ©
JdlN|lm|s|vw|o | K| 0
ARV RVE RN RV VA RV DX | XXX
v | < | | =
A T o A o A o B (S Y I o IS N ||| O] O
dldlm|xs|B]|o| x| @
NERNARVARVE RSN R RV > | X | X | XX
w|lo|lm|m
w|o|lo|lolo|lo|on| o
JdIN|olIS|Inloe|~s]|a S|1eI3|Lle
Y [ ¥ | ¥ | ¥ | X | X | X | X ///
Nloalaloalaloloa| o
dlN|lom|<s|b]|o|~]| o 1
¥ | ¥ | ¥ | ¥X | ¥ | X |X|X
N N W
A | A | A | A | A | A | A
JdIN|®|T|bh|lo|R|x a O o CO
Y | ¥ | ¥ | X | X | X | X |X
1
-H 9 N N »m oo =
o O o O a O a O
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Element®

P1’
QY
P2’
Q2
P3'
Q3
P4
Q4

Total stiffness matrix

P2
Q2
P5
Q5

Tx Iy 2x 2y 3x 3y 4x 4y
K1l | K12 | K13 | K14 | K15 | K16 | K17 | K18 ur
K21 | K22 | K23 | K24 | K25 | K26 | K27 | K28 V1
K31 | K32 | K33 | K34 | K35 | K36 | K37 | K38 U2’
K4l | K42 | K43 | K44 | K45 | K46 | K47 | K48 v2'
K51 | K52 | K53 | K54 | K55 | K56 | K57 | K58 U3’
K61 | K62 | K63 | K64 | K65 | K66 | K67 | K68 V3
K71 | K72 | K73 | K74 | K75 | K76 | K77 | K78 U4’
K81 | K82 | K83 | K84 | K85 | K86 | K87 | K88 V4
A
— S
> N~
N
Uz V2 U5 V5
P2 K1l | K12 | K17 | K18 u2
Q2 |= K21 | K22 | K27 | K28 V2 .
P5 K71 | K72 | K77 | K78 U5 )
Q5 K81 | K82 | K87 | K88 V5
U2 V2 us V5
K33'+K11% | K34'+K12? | K35'+K17% | K36'+K18° u2
= K43'+K21? | K44'+K22? | K45'+K27% | K46'+K28° V2
K53'+K71% | K54'+K72' | K55'+K77" | K56'+K78" U5
K63'+K81% | K64'+K82° | K65'+K87" | K66'+K88? V5

Location
matrix

A W O O O O N -
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In case of displacement control

Treating the control direction 3y and 6y as restrained freedom, the freedom vector will

»
»

ANRRRANY

be the same as the previous example.

1 0 1 0
1, 0 1 0
2y 0 0 1
2, 0 0 2
3 0 1 0
3 0 1 0
fF}= S0
4, 0 1 0
4, 0 1 0
S5« 0 0 3
Sy 0 0 4
6y 0 1 0
6, 0 1 0
Freedom vector
Element®
s) t
i
21y
I'y 1 I'y 0
I', 2 I'y 0
2'y 0 2'y 0
2' 0 2! 1
Fl= Fl=2
X X
3y 0 3 2
4'y 3 4'y 0
4\ 4 4\, 0

Location matrix

Location of control

P

Ll 0
| 0
2, 0
2, 0
3, 0

A

4.0 0
4,0 0
5] 0
51 0
6, 0
6,| 2

Control vector

X
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Element®

P1
QU
P2’
Q |=
P3’
Q3
P4’
Q4

-K14-K16
-K24-K26
-K74-K76
-K84-K86

Total equilibrium equation is

Tx Iy 2x 2y 3x 3y 4x 4y
K1l | K12 | K13 | K14 | K15 | K16 | K17 | K18 ur
K21 | K22 | K23 | K24 | K25 | K26 | K27 | K28 V1
K31 | K32 | K33 | K34 | K35 | K36 | K37 | K38 U2’
K4l | K42 | K43 | K44 | K45 | K46 | K47 | K48 v2'
K51 | K52 | K53 | K54 | K55 | K56 | K57 | K58 U3’
K61 | K62 | K63 | K64 | K65 | K66 | K67 | K68 V3
K71 | K72 | K73 | K74 | K75 | K76 | K77 | K78 U4’
K81 | K82 | K83 | K84 | K85 | K86 | K87 | K88 V4
s@)| 6(3’)ﬂ|D
20 il
2(1) 3(2)
U2z V2 U5 V5
P2 K1l | K12 | K17 | K18 u2
Q2 |= K21 | K22 | K27 | K28 V2 <
P5 K71 | K72 | K77 | K78 us
Q5 K81 | K82 | K87 | K88 V5
V3 V6
P2 K14 | K16
Q2 |= K24 | K26 -1 | D <
P5 K74 | K76 -1
Q5 K84 | K86
u2 V2 us V5
K33'+K11? | K34'+K12® | K35'+K17° | K36'+K18? U2
= | K43'+K21? | K44'+K22% | K45'+K27° | K46'+K28? V2
K53'+K71% | K54'+K72" | K55"+K77" | K56'+K78" us
K63'+K81% | K64'+K82° | K65'+K87" | K66'+K88? V5

Location
matrix

A W O O O O N -

Location
of control

o O N O B O O o
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14. SKYLINE METHOD

Usually, the total stiffness matrix [ K ] is symmetric and sparse as shown below.
Therefore, to save memory size and to reduce calculation time for linear equation solver,
the elements in the upper triangular part of the matrix under the Skyline (thick line)

are stored in an one-dimension vector.

Total stiffness matrix [ K ] . Stiffness vector

1 | K11
K11 J‘|<12 14 / '1(1?
K22
k21 [|k22 #x23 #x25 |<2? 3 |Kat
K32 ||k33 |34 [|k35 |<3? K33 l
5 | K23
K41 | K42 | K43 ||K44 (JK45 I(d?
6 | Ka4
K51 | K52 | K53 | K54 (JK55 ‘TKEE |K5? "KSS 7 K43
K65 IKEE |KE‘.-’ K68 8 10 |y
9 | K14
K71 | K72 | K73 | K74 | K75 | K76 IKT? K78
K55
K85 | K86 | K87 [|K&8 11 | ka5
' _ 12 | K35 | |
Skyline height 13 | k25
0 1 1 3 3 1 6 3 K66
v
Diagonal element order 15 | Ks6
K77
1 2 4 6 10 14 16 23 27
17 | K67
Band width ( = the maximum skyline height) 18 | K57
19 | K47
6 20 | K37
21 [ K27 | §
22 | K17
K88
24 | K78
25 | K68 | |
26 | K58




Exercise 3)

Using the same structure in Exercise 1), please compare

1) skyline height,

2) diagonal element order and

3) band width

between the following two cases with different node order.

10

v

Case 1l v
A
/
A
—
/
Case 2
Y
A
—
/
e
A

v
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15. INCOMPATIBLE ELEMENT

In an ideal situation, a beam under a pure bending moment experiences a curved shape
change. The angle between the curved horizontal dotted line and the straight vertical
line remains at 90 degree after bending. Therefore, no shear strain occurs inside a

material.

no shear strain

To model the ideal shape change, an element should have the ability to assume the
curved shape. The second order element with eight nodes enables to represent the
curved shape. On the contrary, the first order element is not able to bend to curves and
all dotted lines remain straight and the angle is no longer at 90 degree. To cause the
angle to change under pure moment, an incorrect artificial shear strain and stress have
been introduced. Therefore, the strain energy of the element is larger than ideal
situation. As we demonstrated in the principle of virtual work method, overestimate of
strain energy causes overestimate of stiffness matrix. This is the reason that the first
order element with four nodes becomes overly stiff under the bending moment. This

problem is called shear locking.

no shear strain

shear strain

(a) Second order element (b) First order element
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To solve the problem in the first order element, we introduce the new displacement

shape functions to add curved displacement modes.

009 = 0 05w+ -5

v(r,s) = ihi(r,s)vi +(1—r2)0:3 +(1—52)a4

o O

(15-1)

It can avoid over stiff in bending; however there might be incompatibility of deformation

at the boundary. Therefore, this element is called incompatible element.

incompatible

Equation (15-1) can be written in a matrix form as,

uls) =H@ s) U+ Gl s)A (15-2)
q_[h 0 ho0 b0 h 0] o fg g 0 0
0 hh 0 hh 0 hy 0 h| 0 0 g, 9,/

UT=[u v, uy vy uy vyouy v AT=le, a o a]
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Stiffness matrix can be obtained from the “Principle of Virtual Work Method,” which is

expressed in the following form:

nga dv=UTF (15-3)

\Y

where, £is a virtual strain vector, ois a stress vector, U is a virtual displacement

vector and /' is a load vector, respectively.

The strain vector is calculated from the nodal displacement vector as,

4
a_u a_hl I+%al+ag_2a2
£ OX o OX OX OX
g 4 oh, 0 0
gy = @ = Z_Ivi+ia3+&a4
, oy ) i Oy oy ) oy
T S W TOR: T LW T T
ay ox i Oy oy oy i OX OX OX
ul
oh oh oh oh | (o9, o
—1r o0 == — 0 — 0 |y % 9, 0 0 a
OX OX OX OX 2 OX !
= 0 a_hl 0 % 0 % 0 @ V2 + 0 0 % 89_2 %
oy oy oy oy | us ay oy |a
oo o b b b |y | [ . A |
ayaxayaxayaxayaxu4ayayaxax
V4
£ = BU + GA (15-4)
In the plane stress problem, the stress-strain relationship is expressed as,
o, £ I v 0 | g
o,|[=——|v 1 0 |eg (15-5)
l-v l-v
Ty 0 0 T Vxy
o = D £
Substituting Equation (15-4) into Equation (15-5),
oc=D(BU+GA) (15-6)
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From the Principle of Virtual Work Method,

[(BU +GA) D(BU +GA)dv

\

BTDdeJU +U [IBTDdejA+A UG Dde]UJrAT[J-G DdeJ
~U"F

15-7)

It can be written in a Matrix form as;

jB DBdv jB DGdv

b KT]]G " DBdv jG Dde[ } b _{ }

Therefore, the equilibrium equation is obtained as,
K K U F
uUu UA — (15'8)
Kaw Kull A 0

Ky = [BTDBdv, Ky, =[B"DGdv
\% \%

where

Ky =[GTDBdv, K,, =[G"DGdv
\Y \Y

From the second equation in (15-8), we can eliminate the incompatible displacement

modes as;

KU +K,A=0

1 (15-9)
A=-K KU
Then, the element stiffness matrix is given by:
F=KU
(15-10)

K= KUU - KUAK:AKAU
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1) Evaluation of Jacobian Matrix

4. oh, 4. oh,
Q g _IXi z_lyi
J — 8r 8r — | i=l 6r i=1 ar (15_11)
o |7y, S
s o) (&t &g
2) Evaluation of the matrix G
From Equation (15-4),
TR E
oX  OX
o=l o o 9 9 (15-12)
o oy
a9, 99, 99, 99,
oy oy ox oX
The derivatives %, . %, , %, , . are calculated as,
OX OX oy oy
09, 0g,or 09,05 09, 09, or 09, &5
oXx or o&x 6s ox. Ox  or ox  0s Ox
o9, 09, or 09,05 09, 09, 0r 09,0
&y oroy osoy oy or oy Os oy
In a matrix form,
%, 09, (or Os)og, 09, 9 9,
ox Ox |_|ox Ox| or or |_j| or or 15-13
O T S T 1o
oy oy oy oyNaos o o os
3) Evaluation of partial derivatives of the interpolation functions
%:_2r %:0
68r , ;S (15-14)
9, _, 9, _
or 0s
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4) Numerical integration
Using the 3 points Gaussian quadrature rule, the stiffness matrices are calculated

numerically as follows:

Mw

=ty
=1 j
3
tz W, Fua (1,S;)
i=1

. j

o=t
3:1
tZ

i=l j=

W, W FUU(

1

(%)

I
—_

WW I:AU( i J)

Mw zMw

W,W; Fya (r,s5) (15-15)

where

Fuu (r,s) = B(x(r,s), y(r,s))" DB(x(r,s), y(r, s))z(();—z))

Fua(r,s) = B(x(r,s), y(r,s))" DG(x(r,s), y(r,s))%

F (r,8)=G(x(r,s), y(r,s))" DB(x(r,s), y(r, s))%

29~ Gl b)) 202

w, =5/9=0.5556, w, =8/9=0.8889, w,=5/9=0.5556

rn=s,=—3/5=-0.7746, r,=s,=0, r,=5,=+3/5=0.7746
Then, the element stiffness matrix is calculated as,

F=KU

. (15-16)
K= KUU - KUAKAAKAU

5) Assemble of finite element

To total stiffness matrix can be obtained to assemble the element stiffness matrix over

the areas of all finite elements.

K=>K, (15-17)

where m denotes the m-th element.
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6) Strain and Stress at Gaussian point

Strain at Gaussian point is obtained from Equations (15-4) and (15-9) as:

e=BU +GA=(B —GK;,LKAU U
Stress at Gaussian point is obtained as:

o =De=(DB - DGK ;1K ,, U

(15-8)

(15-9)
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16. HEXAHEDRON ELEMENT

A hexahedron element is extensively used in modeling three-dimensional solids. It has
eight corners, twelve edges, and six faces. By introducing natural coordinates (r, S,t),

which vary from -1 to +1, it is possible to use the Gauss integration formulas.

H

z
1
s
{a} Eight to 20 variable-number-nodes three-dimensional
x efement
A A
3(-1,-1,1) 2 (1.11) 10'(-1,0,1)
9(0.1,1)
4(1,-1,1) 0.
> S > S
7( 6(11-1) | O & q-----
14 (-1,0,-1)
13(0,1,-1)
8(1,-1,-1) 5(1,1,-1) 16 (1,0,-1)
¢
A
18 (-1,1,0)

(b) Natural coordinates
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The corner numbering rule is described as follows to guarantee a positive Jacobian

determinant.
1) Chose starting corner (number 1) and select one face pertaining to that corner.

2) Number the other corners on the face in counterclockwise order (number 2, 3, 4).
3) Number the corners of the opposite face to be opposite 1,2,3,4 as 5,6,7,8.

4) Number the middle point on the edge following the number of corner.

The interpolation function is given by
h(r,s,t)= % r2sit>(1+rr)1+ss)l+tt)rr+ss+tt—2)
+i(1 —r2 N1+ss)i+tt)fi-r?)
+%(1 —s N1+t 1+ nr)i—s?)

+%(1—th1+ rr)i+ss)i—t?)

(16-1)

The partial derivative of the interpolation function is

nr.st) =%rzs.2t.2r. (2rr+ss+tt—1)1+ss)1+tt)

or
—%(1 —r2 1+ 55N+ tt)r +iri (l—si2X1+tit)(1—sz)+%ri (1t )1 +ss)1-t?)
on(r,s.Y) ((;;S’t) =3 r2sitls,(rr+2s,s+tt —1)1+rr)1+tt)

+%si(l—ri2X1+tit)(l—rz)—%(l—stHtit)(lJrrir)s+%si(1—ti2X1+rir)(l—tz)

oh(rst) 1
ot 8

+%ti (1= 1+ s,5)1- r2)+iti (1-s? )i+ rir)(l—sz)—%ti(l—th1+ rr)l+s,sk

(16-3)

22t (rr+ss+2tt —1)1+rr)i+s;s)
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The coordinate transfer function {x, y, z} is expressed using the interpolation functions

20

X(ra S,t) = Z hi (ra S,t)xi
i=1
20

y(r’ Sat) = Z hi (r’ S: t)yl
i=1

20
2(r,s,t)= > h(r,s,t)z,
i=1

(16-4)

The deformation function {u, v, w} is expressed using the same interpolation functions.

20

u(r,s,ty= > h(r,s,tu,
i=1
20

v(r,s,t)=> h(r,s,ty,
i=1
20

w(r,s,t)=> h(r,s,Hw,
i=1

In a matrix form,

u) [h, 0 0 h, 0 0
vi=|{0 h 0 h, O
w) [0 0 h 0 0 hy

ul, s,t) =H, s,t) U

In case of the plane problem, the strain & vector is defined as,

£ =

6714' i ahi U; _% 0
OX i X ox
c o > on, v, 0 oy
SX g\)I/V i27)1 aahy ay
y )
== ~W, 0 0
&, _ 0z ; 0z
= =1 20 20
7xy aiu'i‘@ Zah' ui+zahi Vi % %
7y gvy aa\j(v o Oy i1 OX oy  OX
20 20
o) || e g, ||
g\fv gy Sor ' Soy oz
u 20 Ah. 20 Ah. 5h1
- + _ 1 I -
5X 52 IZ:l: ax Wi +§ 62 ui az

oh,
0z

o,

oh,
OX

oh,, 0
OX
0 oh,,
oy
0 0
oh,, dhy,
oy OX
0 oh,,
oz
oh,,
0z

(16-5)
(16-6)
0 |
o [ U

Vl
oh,, w,
0z :
0

20
5h20 V20
ay W20
oh,,
ox |
16-7)
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The stress-strain relationship is expressed as,

O-x O-)’ Gz O-y O-x O-z O-z o-x O-y
“E "E Ve YTE Ve "B “TE " B
., , | (16-8)
Xy yz T
= — , . = — ) x = -, = E
=g TeT g 2T 2(1+v)
In a matrix form,
&) | YE -v/E —-v/E 0 0 0 |o,
£, -v/JE 1/E -v/E 0 0 0 |o
-v/E -v/E 1/E 0 0 0
‘= v/ v/ / i (16-9)
Vxy 0 0 0 /G 0 0 | 7y
7y 0 0 0 0 1/G 0 ("
Y») | 0 0 0 0 0 1/G |7,
From the inverse matrix, the constitutive matrix is obtained as,
o, [1-v v 1% 0 0 0 e
o, v 1-v v 0 0 0 y
o,| 2G 1% v 1l-v 0 0 0 g,
| 1-2v| 0 0 0 (1-2v)/2 0 0 Vs
7, 0 0 0 0 (1-2v)/2 0 Ve
T, L0 0 0 0 0 (1=2v)/2 |\ 7,
o =D ¢ (16-10)
Substituting Equation (16-7) into Equation (16-10),
c=DBU (16-11)

From the Principle of Virtual Work Method, the stiffness matrix is obtained as,

F=KU, K :jBT DBdv (16-12)
Vv

Since this integration is defined in x-y-z coordinate, we must transfer the coordinate
into r-s-t coordinate to use the numerical integration method. Introducing the Jacobian

matrix,
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oX oy

or or
ox oy
0s 0s
ox oy

ot ot

or
o

at

0z

0z

0z

The above integration is expressed in r-s coordinate as,

; Jacobian Matrix

111
K = ”IB(r,s,t)T DB(r,s,t)M drdsdt

1-1-1

where

004 Y.2) _ 4y

o(r,s,t)

OX

or
OX

OX
ot

1) Evaluation of Jacobian Matrix

oXx oy oz

or or or

j_| %y oz
0s 0 05
Q oy oz

ot ot ot

2) Evaluation of the matrix B
From Equation (16-7),

OX
o Moy
oy
0 0 6a—h1
. Z
Pl
oy OXx
o o o
oz oy
on -, on
| 0z OX

20 ahl
S or
20 ahl
= o5
20 ah
_'Xi
i Ot

oh,,
OX

oh,,

oh,,
0z

o(r,s,t)

oy oz

or or
oy oz

0s 0S
oy oz

20 ahl
2 E Yi
20 ahl
o5
20 ahl
2o

Ny
oy

0z
oh,,

OX

ahZO ahZOl

0z oy

oh,,
oX |

oh,,

20 8h|
20 ahl
20 ahl
~ o

(16-13)

(16-14)

(16-15)

(16-16)

(16-17)

61



oh,  ohy, oh  ohy, oh  ohy

are calculated as,

The derivatives —,---, T, T
X oX oy oy oz 0z

oh _ohor ohs aha o ohy _ohyor ohy s ohy Ot

OX or &x 8s ox ot ox’ " OX or ox 0s ox ot ox’

a_m:a_mﬂ+6_m§+6_mg, ’ahzo=_ah20ﬂ+_ah20§+ahzog’ (]_6-]_8)

oy oroy osoy ot oy oy or oy os oy ot oy

oh_ahor s ohar o chy ohar dhyds oy at

oz or oz oOs oz ot oz " oz or 0z 0s 071 ot oz

In a matrix form,

oho o) far es ayeh ) (ah o oh

OX OX OX OX OoX| or or or or

%hl % :% % % aai % :J—laa_hl % (16-19)
S S S S

oh,  ohy or os ot |oh o dhy oh o ohy

0z 0z 0z oz az)\ ot ot ot ot

3) Stress and strain at Gaussian point

If you use the 3-points Gaussian Integration Method, there are 27 Gaussian points

r,s.t )(i=123,J=123,k=123) in an element. The stress and strain at the
i jork

Gaussian point (I’i ) S; ,tk) is obtained from

O-X gX
O-y gy
oy = =DBU, ¢;= =B,U (16-20)
z-xy yxy
Tyz yyz
T i Y x ij

4) Numerical integration
To reduce calculation time, the 2 points Gaussian quadrature rule is adopted to

calculate the stiffness matrix as follows:



B(r,s,t)" DB(r,s,t)M drdsdt
o(r,s,t)

A

I
[ S——
[ S——
[ ——

F(r,s,t)drdsdt (16-21)

Il
[ S——
Le—
Lo—

iiiww w, F(r;,s i t,)

i=1 j=1 k
where

o(X,Y,2)
F(r,s,t)=B(r,s,t) DB(r,s,t) =2~
(r,s,t)=B(r,s,t)" DB(r,s )a(r,s,t)
w, =w, =1.0

r=s =t =—/1/3=-0.57735, 1, =5, =t, =/1/3 =0.57735

5) Assemble of finite element

To total stiffness matrix can be obtained to assemble the element stiffness matrix over

the areas of all finite elements.

K=>K, (16-22)

where m denotes the m-th element.
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17. PLAIN STRESS AND PLAIN STRAIN

1) Plain stress assumption
If a thin plate in the x-y coordinate is loaded by forces at the boundary and distributed
uniformly over the thickness, the stress components along z-axis, o,,7,, , Ty, Are Zero

on both faces of the plate. It can be assumed that they are also zero within the plate.

- 4

Plain stress condition

Then, from Equation (16-9), the stress-strain relationship is expressed as,

&) [ VE -v/E -v/E 0 0 0 o
y -v/E 1JE -v/E 0 0 0 o,
-v/[E —-v/E 1/E 0 0 0 =0
‘= v/ v/ / c (17-1)
Yy 0 0 0 /G 0 0 Xy
7y 0 0 0 0 1/G 0 T, =
V) |0 0 0 0 0 1/GJ\r,=0
Thus,
LR
gX E E GX
g, |= —vé é 0| o, (17-2)
7xy 0 0 i Xy
L G|
o, £ 1 v 0 | g
or o, |= ~lv 1 0 &, (17-3)
l-v l1-v
Xy 0 0 T 7xy
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2) Plain strain assumption

When the dimension of the body in z-direction is very large such as a retaining wall

with lateral pressure, it may be assumed that the displacement in the z-direction is

prevented.

ant

Plain strain condition

Since the longitudinal displacement is zero, from Equation (16-10),

o, l-v v 0 0 0 &y
o, v 1-v 1% 0 0 0 &,
o, 2G 1% v l-v 0 0 0 g, =0
— (17-4)
T, | 1-2v| O 0 0 1I-2v 0 0 Yy
T, 0 0 0 0 1-2v 0 Yy =
T, | 0 0 0 0 0 1-2v \7, =0
Thus,
o, G l-v v 0 Ey
o,|= v 1-v 0 &, (17-5)
1-2v
y 0 (1-2v)/2| 7,
or
&y | I-v —-v 0o,
e, |l=—| -v 1-v 0| 0o (17-6)
y 2G y
Yy 0 0o 2 Ty

Note that, from Equation (17-4), the normal stress along z-axis is not zero.
o,#0

which will be considered in case of nonlinear problem.
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66



L e

Index of Chapter 2

Mass Matrix for Isoparametric Element
Eigen Value Problem
Classical Damping

Equation of Motion under Earthquake Ground Motion

67



1. MASS MATRIX FOR ISOPARAMETRIC ELEMENT

1) Formulation

Under dynamic loading, the “Principle of Virtual Work Method in dynamic problem =

DAlembert’s principlée’ is expressed in the following form:
N —-W =0

5Q=_[ETO'dV

\Y
2
&N=IT(F—pau &qdv
\%

o Mot
where F: body force, p: density, u: damping coefficient

Substitute following relationships into above equations:
ul, s)=H@ s) U
e=BU
c=DBU

5Q=1KBUT(DBU)mpzﬂT(jBTDBmJu

o0%u ou
W =|U"|F- —u—|dv
for(F oo

UTIHTFdV—UT[jHTpFMV}J—UTKJHTyFMV})
\ \% \%

Therefore, from Equation (1-1),

(IHT;)de}J+(jHT;¢Hd{}]+([BTCBmJU::UTI+1TFdV
\ v v 7

That is, the equilibrium equation is expressed as,

MU +CU + KU =R

hﬂz(jHTpFM{} C=(IHTyFM{} K:{jBTDqu, R=[HTF dv
\% \% \% \

(1-1

(1-2)

(1-3)

(1-4)

(1-5)

(1-5)

(1-6)
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2) Evaluation of the matrix H and HTH

For a two dimensional isoparametric element,

H{hl 0 h, 0 h, 0 h, 0}
0

0 h h, 0 h, 0 h,

0]

0 h

h, 0
HTH - 0 h, {hl 0 h, 0 h
hy 00 h 0 h, 0

0 h,

h, 0

L0 hy
h> 0 hh, 0 hh 0
h 0 hh, 0 hh,
>0 hh, 0
~ h? 0 hyh,
- h2 0
hy

sym.

For a three-dimensional hexahedron element,

h, 0 0 h, O
H=[0 h 0 0 hy,
0 0 h 0 hy

0 h,
0 h,

h3

hh,
h,h,
hsh,

0
h;

0

hh,
h,h,
hsh,

h;

1-7

(1-8)

(1-9)
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hh 0 0
0 h 0
0 0 hfh 0 0 hy 0 0
H'H = : 110 h 0 hy O
hy 0 0[]0 0 h 0 0 h,
0 hy O
|0 0 hy]
h> 0 0 hh, 0 0 - hhy, 0 0 |
h 0 0 hh, 0 - 0 hh,
h 0 0 hh, hh,,
h2 0 - h,h,,
— hz2 0 hyhy,
) h22 0 hyhy,
sym. h2, 0 0
h;, 0 (1-10)
i hy,

3) Numerical integration

The integration for mass matrix can be expressed in r-s coordinate as,

M =[HT p Hdv

=t IH T pHdxdy (1-11)

Vixy)
11

=tp| [HTH (det J )drds
Mhs}

The integration can be evaluated by the Gaussian Integration Formula as,

WWG(r s)

12%]

Mw
Mw

M =tp
(1-12)

I
I
—_

i=1 ]

(r,,sj) HT r,,sj) (,, J)detJ)



4) Lumped mass model

The mass matrix obtained from the density of material is called the consistent mass
matrix using the same interpolation functions for stiffness matrix, mass matrix and
load vectors. Instead of performing the integrations, we may evaluate an approximate
mass matrix by lumping equal parts of the total element mass to the nodal points which
is called the lumped mass matrix. An important advantage of using a lumped mass
matrix is that the matrix is diagonal and the numerical operations for the solution of

the dynamic equations are reduced significantly.

Suppose that the consistent mass matrix is expressed as,

Meyy Mgy, o0 Mgy,
m m coe m

M = <.:21 <.:22 . (?Zn (1-13)
anl an2 ann

The lumped matrix can be evaluated from the consistent mass matrix from the

following formula:

m,, 0 0
0 m 0 n
M, = 522 . my =) mg (1-14)
: j=1
0 0 m

5) Gravity force

Gravity force is considered as a body force as

11 0
R=(H'Fdv=t |HTFdxdy=t||H"F (detJ)drds, Fz( j (1-15)
fre =t oy =] e e, F<[ ©

V(X,Y) -1-1

where §(=9.8m/s?) is the gravity acceleration.

(1-16)
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2. EIGEN VALUE PROBLEM

The free vibration equilibrium equation without damping is

MU + KU =0 (2-1)

where Kis the stiffness matrix and A is the lumped mass matrix in the form,

0 0
0 m 0
M = z (2-2)
0 O m,
The solution can be postulated to be in the form
U=ge" (2-3)

where ¢ is a vector of order n, @ is a frequency of vibration of the vector ¢ .

Then, the generalized eigenproblem is,

K¢ =w’Mg (2-4)

This eigenproblem yields the n eigensolutions (a)l2 ,¢1), ((022 ,¢2)---, ((02 ¢n) where the

n?

eigenvevtors are M-orthonormalized as,

=1: =i
S =1 (2-5)

SIMG, = Mg, Z{ 05 i#]

0<w <o, < <o) (2-6)

n

The vector ¢ is called the i-th mode shape vector, and @, is the corresponding

frequency of vibration.

Defining a matrix ® whose columns are the eigenvectors and a diagonal matrix Q?

which stores the eigenvalues on its diagonal as,



(2-7)

We introduce the following transformation on the displacement vector of the

equilibrium Equation (1-6),

U (t) = DX (t) (2-8)
Then,
M®X + CDX + KDX =R (2-9)

Multiplying @',

O"MDPX +D'COX +D'KOX =d'R (2-10)
Using ®' M® =1, O'KO=0Q?,
X+DTCOX +Q*X =d'R (2-11)

A damping matrix that is diagonalized by @ 1is called a classical damping matrix.

2h, @,
T =~ 2h,w,
O Ch=C = (2-12)
2h @,

where h, is the modal damping ratio of the i-th mode.
Then, Equation (2-11) reduce to n- equations of the form

% (1) + 2h @, X(t) + @, X(t) = 1, (1) (2-13)
where T(t)=¢"R(t)
The initial conditions on X(t) are obtained from Equation (2-8) as,

X =®'MU_,, X_,=®"MU,_, (2-14)
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3. CLASSICAL DAMPING

Three procedures for constructing a classical damping matrix are described as follow:

1) Proportional damping

Consider first mass-proportional damping and stiffness-proportional damping,

C=aM and C=2aK (3-1)

where the constants a,,a, have units of sec! and sec, respectively.

For a system with mass-proportional damping, the generalized damping for the i-th

mode 1is,
c, =a,m, c,/m =2ho, (3-2)
Therefore,
a, 1
a, =2hw,, h =—2>— (3-3)
2 w

Similarly, for a system with stiffness-proportional damping, the generalized damping
for the 1-th mode 1is,

c,=am m, c/m =2ho, (3-4)
Therefore,
2h, a
a=—, h = (3-5)
) 2
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2) Rayleigh damping

A Rayleigh damping matrix is proportional to the mass and stiffness matrices as,
C=a,M +aK (3-6)

The modal damping ratio for the i-th mode of such a system is,
hi :———|——a)i (3'7)

The coefficients @,, 8, can be determined from specified damping ratios h;, h, modes,

respectively. Expressing Equation (3-3) for these two modes in matrix form leads to:

1 Vae, olfa _ h, (3-9)
2|1, o, h,
Solving the above system, we obtain the coefficientsa,, a,:

_ 20,0, (a)l h, - w2h1)

0 2 2
o, — 0,

_ 2(w1h2 - a)zhl)

2

(3-9)

a, = 2
o, — W,
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3) Modal damping
It is an alternative procedure to determinate a classical damping matrix from modal

damping ratios. From the definition of a classical damping matrix,

2h, o,
O'Ch=C = 2h,,
2h w,

C=(@")'Co" (3-10)
Since ® "' M® =1,

@) =M, @'=0"M (3-11)
Therefore,

C=(Mo)C(®™™) (3-12)
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4. EQUATION OF MOTION UNDER EARTHQUAKE GROUND MOTION

1) Equation of motion under earthquake ground motion

Earthquake ground motions are defined as two components acceleration; X , and YO, inXand Y

directions. The inertia forces at node i are defined as,

M. (i + X i 1 0|[X . X
'(' ..0) =-M:{ "t -M Lib=—MU -MI{ O 4-1)
_Mi(vi+Y0) Vi 0 TILY, 0
where
1 0 O
u={'tL M=/, > | 1= (4-2)
v, : : ‘. : 0 1
0 0 m :

Equilibrium condition of the structure under earthquake ground motion is:

CU + KU =-MU —MI{)SO}
T 0

— ~ ~—

Inertia force

Damping force

Restoring force

Finally the equation of motion is obtained as:

MU +CU + KU =—M|{ ..°}= R (4-3)

0
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2) Numerical integration by Newmark-§ method
The incremental formulation for the equation of motion of a structural system is,

[MRiaa, j+[CHav;j+[KKad; | = {ap;} (4-4)

where, [M], [C] and [K] are the mass, damping and stiffness matrices. {Adi}, {Avi},
{Aai} and {Api} are the increments of the displacement, velocity, acceleration and external force

vectors, that is,

{Adi}E {di+1}_{di}’ {AVi}E {Vi+1}_{vi}’

{Aat=1{a., -{a;}, {apt={p..}-{p:} (4-5)
Using the Newmark—B method,
{Av,}={a, J(At)+ {Aa H(At) (4-6)
{Ad; = {v; jat) + { Hat)” + plaa, j(aty (4-7)
From Equation (4-7), we obtain

1 1 1

A=——JAd. }—— V. f——1a. -

) = - el -l )
Substituting Equation (4-7) into Equation (4-6) gives

1 1 1
(o= ey 8571+ 157 @

Equations (4-8) and (4-9) are substituted into Equation (4-4), and we obtain

1 1
) Al el )

(4-10)
-t e o] ot -1 )|

The equation can be rewritten as,

K| -ad,} = ap,} @4-11)
where,

[K]=[<]+ -~ lcl+——[m] (4-12)

= b s el o - e |
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